
Hadoop-MTA: a system for Multi Data-center Trillion
Concepts Auto-ML atop Hadoop

Keqian Li†, Yifan Hu†, Manisha Verma×, Fei Tan†, Changwei Hu¶, Tejaswi Kasturi†, Kevin Yen†

Yahoo Research†, Amazon Inc.×, XPeng Motors¶, RED †,

Abstract—The ever-growing computation capability distributed infras-
tructure brings tremendous opportunities for mining and analysis of
data that was impossible otherwise. Meanwhile, the inherent computation
model of distributed system also brings unique and non-trivial challenges
for traditional Auto-ML, including the explosion of data dimensions, the
expected absence of features, and the heterogeneity of information. This
is especially the case in modern Internet enterprises, where data in the
scale of trillions are stored in multiple data centers, and the discovery
of subtle signals could incur significant impact in revenue and welfare.
How can we best harness the large scale distributed machine learning,
but without keeping engineers constantly in the loop? In this work, we
present Hadoop-MTA, a system for Multi Data-center, Trillion Concepts,
Auto-ML on top of the Hadoop distributed computation environment
that leverages sparsity aware heterogeneous knowledge graph represen-
tation and dimensionality agnostic parallel learning. Through multiple
large scale experiments, we find that Hadoop-MTA significantly output-
performs competitive state of the art distributed learning algorithms and
scales well to trillion scale data-sets. Our model is rolled out to Hadoop
serving infrastructure in Yahoo covering billions of unique identities and
shows improvements 129.5% accuracy and 106.5 % weighted F1-score
(more than 2x) on key targeting use cases.

I. INTRODUCTION

Ever since the introduction of commercial distributed computation
engine such as Hadoop, distributed system has transformed the
industry landscape by scaling up the ingesting, analysis and serving
infrastructure and supporting large scale modeling use cases such as
personalization and online advertising [1]. However, the sheer scale
of the computation and overheads also incur significant turnaround
time and may requires engineers and scientists constantly engaging
during the ML life-cycle and incur significant operating costs. The
importance Auto-ML cannot be overstated in this case.

Traditionally Auto-ML paradigm [2] fails in distributed computa-
tion use cases primarily due to the following reasons:

• Data Integration: digital footprints such as instrumentation logs
are collected and integrated from disparate domain and even dif-
ferent physical data centers with irregular schema relationships
and modality, which presents significant challenges for models in
traditional domains such as vision, language, speech, time series,
spreadsheet where data are expected with regularly shapes

• Dimension Explosion: the unlimited horizontal scalability of
multi data center distributed system leads to O(n) growth of
data dimensionality unforeseen in traditional scalable learning
approach such as data-parallel learning and stochastic optimiza-
tion

• Expected Absence: vast majority of the digital footprints are in
the form of implicit feedback where features are expected to be
missing at random (MAR) where learning algorithm for dense
data suffers from efficiency or effectiveness drop

We present Hadoop-MTA, a system for Multi Data-center, Trillion
Concepts AutoML on top of the Hadoop distributed computation
environment. Our system builds upon previous concept mining and
analysis stack [3], [4], [5], [6], [7]. Instead of optimizing specific

Fig. 1: Illustration of Hadoop-MTA use cases. Personalization in-
sights are provided along with options for opt-out

Accuracy AUC Recall Prec. F1 Improvement
from precedent

Candidate production 0.569 0.569 0.55 0.75 0.6 -
with activity feature 0.815907 0.61173 0.991181 0.821024 0.898114 + 7.51%

plus stochastic AutoML 0.823101 0.637293 0.995811 0.825528 0.902709 + 4.18%
plus data integration 0.8131 0.7489 1 0.8131 0.8969 + 17.51%

plus compliant label engineering * 0.8272 0.8419 0.9998 0.8271 0.9053 + 12.42%

TABLE I: Comparison of Hadoop-MTA with candidate production
system on key rare-class predictive segment task. Method marked
with * are evaluated on different non-identical evaluation set.
part of the pipeline [8] and specific modality [9], [10], [11], [12], we
focus on end to end solution for distributed AutoML that scales above
trillions of concepts, through computation space and time preserving
transformation a unified unfolded concept learning framework and
present subsequent AutoML pipelines with provable performance
guarantee.

Fig. 2: Illustration of concept unfolding for transforming heteroge-
neous data into sparse sequence of concepts

II. CONCEPT UNFOLDING

As illustrated in Figure 2, different objects of interests such as
raw events of user activity are logged into production, which may go
through intermediate enrichment via automated or manual labeling

Accuracy Recall Precision Weighted F1 Cohen Kappa
Previous Production 0.1954 0.2327 0.2834 0.2148 0.0764

Hadoop-MTA 0.4485 0.3501 0.4434 0.4437 0.3022
Lift +129.5% +50.5% +56.4% +106.5% +295.5%

TABLE II: Comparison of Hadoop-MTA with the previous production
system on accuracy based targeting use case

978-1-6654-3902-2/21/31.002021IEEE

Fig. 3: Evaluation of Hadoop-MTA black-box in-the-core AutoML following exponential search schedule

Fig. 4: Second order join distribution of concepts
and linked to other external entities and further interconnected with
others objects such as events, users and entities. In this case, data
are assumed to be of arbitrary schema and interlinked in arbitrary
ways of their choice, and physically resides in arbitrary types of data
storage engines in Hadoop. We start by exploring different options
to represent the data.

Formally, assume the objects are organized as entities S. According
to the type of entity T(s) ∈ T , the meta data of entity s.feature
may be a scalar, ordered list, dictionary or recursive composition of
them of fixed schema ΨT(s). There is also a set of link l ∈ L that
connects two or more entities whose metadata l.feature may also
be a scalar, ordered list, dictionary or recursive composition of them
of fixed schema ΨT(l) depending on its type T((l). In this work, we
focus on learning for entity level predictions:

Definition 1 (Learning in heterogeneous data): Assuming the label
function of interest y : S → Y mapping entity to one label in Y , the
goal is to learn a hypothesis hS,L,T ∈ H ⊆ S → Y that minimizes its
expected risk from the label by a given standard L under a probability
measure of the entity p : S → [0, 1]

minimize
hS,L,T

R(hS,L,T) = E[L(hS,L,T(s), y(s))]

=

∫
S
L(hS,L,T(s), y(s))p(s)ds

For traditional relational data such as database, spreadsheets, CSV
[8] one can formalize a similar learning task as below:

Definition 2 (Learning in relational database): assume the objects
are organized as entities S and links l ∈ L similar as above, except
the meta data of entity s.feature, l.feature is ordered list of scalars
of fixed schema ΨT(s), ΨT(l) , respectively. The goal is to learning
a function hS,L,T ∈ HR minimize the risk R(hS,L,T) in the same
form as above.

Furthermore, we also study the important modalities from hetero-
geneous graph and graph neural network literature [13], as well as
first-order logic knowledge-base.

Definition 3 (Heterogeneous graph learning): A heterogeneous
network G = {S,L, X,R,T} is a network with multiple types
of nodes and links. Particularly, within H , each node vi ∈ S is
associated with a node type T(vi), and each link eij ∈ L is associated
with a link type T(eij). Each node vi of type o = ϕ(vi) is also
potentially associated with attribute Xo

i , while each link eij of type

o = ψ(eij) with attribute Ro
ij . The goal of Heterogeneous graph

learning is to learn a function hG ∈ HG ⊆ S → Y that minimize
the loss R defined same as above.

Definition 4 (First Order logic inference): Given a set of variables
S, true valued-expression L consisting of variables and their recur-
sive composition via first order logic connectives, quantifiers and
functions, the goal of first order logic knowledge graph inference
is to find the truth value for other expressions L′ also consisting
of variables and their recursive composition via first order logic
connectives, quantifiers and functions.

We present the Unfolded concept learning framework as a unified
framework that pave the way for advanced mining and Auto-ML
techniques, and a scalable distributed algorithm to implement this. As
shown in Figure 2, each particular multi-hop connection, for example
one conforming to meta-path [13] or a SPARQL query, is serialized as
an element c in concept vocabulary, c ∈ C. where a feature vector c⃗s
with a bijective mapping between its index and C are stored for each
entity s ∈ C. If we again simplify the notation and set s.feature :=
c⃗s for all s ∈ S, we have

Definition 5 (Unfolded concept learning): For each entity s ∈ S,
the goal is to learn a model h ∈ HC ⊆ RC → Y , that minimize the
risk defined in Definition 1.

By first emitting individual concepts and perform reduce to create
a vector for each entity, we have the following efficiency result

Theorem 1 (Existence of O(d) time and space concept unfolding
in distributed computation): Assuming the distributed primitive of
map, reduce, there exists algorithm for producing unfolded concepts
for every entity in d time where d is the degree of the data, defined
as maximum number of non-zero concepts associated with an entity
s ∈ S.

This unfolded concept learning framework allows efficient integra-
tion of data while leveraging the absence of feature to support sparsity
preservation computation through the AutoML pipeline. Furthermore,
it efficiently represent all the above problems where architecture such
as GNN [13] can be included as a special case in the unfolded concept
learning solution space.

Theorem 2: The above learning problems (Definition 1-4) accepts
polynomial reduction to the concept learning as in Definition 5.
Specifically, there exists linear time reduction from learning in
heterogeneous data, relational database, and heterogeneous graph
learning (Definition 1-3) .

III. CONCEPT VALIDATION

The quality of mined concepts and data-set are of primary im-
portance to downstream tasks. For this purpose we follow previous
literature on concepts mining [3], [9] and specifically propose the
following criteria for Auto-ML:

• Concept Reliability: are concept’s occurrence too rare to be
found useful?

• Concept Informativeness: are concept’s informative to the
meaning of an instance?

• Concept Relevance: are concept particularly relevant to the task
at hand?

• Instance Reliability: are the instance providing reliable and
meaningful information for the model to predict?

We leverage the following metrics for the above criteria:
• Concept Support is defined as the absolute number of occur-

rence of a concept and are used as a high-pass filter.
• Concept Density is defined as the likelihood of occurrence of

a concept and are used as a low-pass filter.
• Instance Support is defined as to the number of concepts of an

instance and are used as a high-pass filter. . Unreliable instances
are likely associated with low instance support.

• Sparse Odds ratio is defined as the relative likelihood of
occurrence of a concept in the sparse representation of instance
excluding zero values, conditioned on different value of label.
Concept with high value will be highly relevant.

Although the above statistics are simple to collect for in-the-
core computation, directly applying distributed algorithm, such as
distributed Pearson score computation [14] will be disastrous pre-
cisely due to Dimension Explosion. To address this, a efficient
frequent concept mining algorithm was implemented that parallels
by the dimension of features leveraging the sparsity of concept
possible representation. It outputs frequent concepts by emitting local
frequency of all concepts tuples up to order of 2 and calculates
the statistics of the joint distribution of all concepts at the same
time, including the support, odds ratio and prevalence defined above.
Details will be found on extended version of the paper.

Theorem 3 (Existence of O(1) second order join distribution
statistics in distributed computation): for distributed , assuming
the cardinality is finite, then only need to enumerate Assuming
the distributed primitive of map, reduce and combine, there exists
algorithm for producing second order join distribution statistics for
every concepts in O(1) excluding the O(d) emit operation in map,
where d is the degree of the data defined in Theorem 1.

Application to label engineering The second order join distribu-
tion statistics can also be applied to label engineering, to efficiently
select agreement among multiple agency and data sources in the
distributed computing environment. AS a result, we can automate the
label engineering effort and impact downstream metrics significantly
(See Table I).

IV. CONCEPT LEARNING

Given the concept vector c⃗s for each s ∈ S, it is relatively
straight-forward to adapt parallel learning algorithms implemented
in Hadoop or Spark or stochastic learning algorithms with Hadoop
I/O. Furthermore, we implemented a black-box in-the-core AutoML
algorithm that runs simultaneous reduce operation, each aggregating
ai of mapper results from a given series (a1, a2, a3, . . .) and runs
in-the-core AutoML algorithm to serve as candidate model for cross
validation and ensembling. By following an exponentially increasing
search schedule, such that (a1, a2, a3, . . .) := (a1, C ·a1, C2·a1, . . .),
we have the following performance and efficiency guarantee for the
black-box in-the-core AutoML:

Theorem 4 (Existence of on black-box in-the-core AutoML): For
any hypothesis h drawn from hypothesis space H with training
complexity Ω(n) where n is the training set size , the difference
between training error ϵn(h) and generalization error ϵ̂(h) is bounded
for any fixed probability

|ϵn(h)− ϵ̂(h)| = O
(√

γ

n(γ − 1)
log(

n(γ − 1)

γ
)

)
where γ is the ratio between the actual computation flops compared to
the maximum computation flops that fits into in-the-core computation.

The final Auto ML system is a hybrid that selects the best among
all the above methods.

V. EVALUATION

The Hadoop-MTA is rolled out to production targeting use cases to
cover billions of user traffic per month. Evaluation in key AUC-based
classification task (Table I) and accuracy-based bucket prediction
task (Table II) shows significant performance gains over production
systems. Individual ablation test over components for second order
joint distribution of concepts where the sparse odds ratio (with 0 value
at bottom and 9 at the top) and the density (with 0 value at left to 1
at the right) of concepts are jointly plotted (Figure 4) for the AUC-
based classification task; for black-box in-the-core AutoML with
exponential search, where bigger searches are encoded with darker
color (Figure 3) for six key AUC-based classification task; and for
individual component improvements where a URL based candidate
production system is improved by replacing with feature with tracked
activity, stochastic AutoML that incrementally learns from batch of
data from distributed storage, data integration across multiple data
centers to join together URL and activity data sources, and compliant
label engineering that applies label engineering (Section III) with only
compliant data sources for training and additional data sources for
evaluation.

REFERENCES

[1] B. Balusamy, S. Kadry, A. H. Gandomi et al., “Driving big data with
hadoop tools and technologies,” 2021.

[2] Y. Li et.al., “Automl: From methodology to application,” in Proceedings
of the 30th ACM International Conference on Information & Knowledge
Management, 2021, pp. 4853–4856.

[3] K. Li, “Mining and analyzing technical knowledge based on concepts,”
Ph.D. dissertation, University of California Santa Barbara, 2019.

[4] H. Zha, W. Chen, K. Li, and X. Yan, “Mining algorithm roadmap
in scientific publications,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 1083–1092.

[5] H. Zha, J. Shen, K. Li, W. Greiff, M. T. Vanni, J. Han, and X. Yan, “Fts:
Faceted taxonomy construction and search for scientific publications,”
2018.

[6] K. Li, P. Zhang, H. Liu, H. Zha, and X. Yan, “Poqaa: Text mining and
knowledge sharing for scientific publications,” 2018.

[7] K. Li, W. Lu, S. Bhagat, L. V. Lakshmanan, and C. Yu, “On social event
organization,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 1206–
1215.

[8] K. Li, Y. He, and K. Ganjam, “Discovering enterprise concepts using
spreadsheet tables,” in Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2017, pp.
1873–1882.

[9] K. Li, H. Zha, Y. Su, and X. Yan, “Concept mining via embedding,” in
2018 IEEE International Conference on Data Mining (ICDM). IEEE,
2018, pp. 267–276.

[10] K. Li and et. al., “Unsupervised neural categorization for scientific
publications,” in Proceedings of the 2018 SIAM International Conference
on Data Mining. SIAM, 2018, pp. 37–45.

[11] K. Li, S. Li, S. Yavuz, H. Zha, Y. Su, and X. Yan, “Hiercon: Hierarchical
organization of technical documents based on concepts,” in 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 2019, pp.
379–388.

[12] F. Tan, Y. Hu, C. Hu, K. Li, and K. Yen, “Tnt: Text normalization based
pre-training of transformers for content moderation,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020, pp. 4735–4741.

[13] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han, “Heterogeneous
network representation learning: A unified framework with survey and
benchmark,” IEEE Transactions on Knowledge and Data Engineering,
2020.

[14] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

	Introduction
	Concept unfolding
	Concept Validation
	Concept learning
	Evaluation
	References

