
Mitigating Divergence of Latent Factors via Dual
Ascent for Low Latency Event Prediction Models

Alex Shtoff
Yahoo Research

ashtoff@verizonmedia.com

Yair Koren
Yahoo Research

yairkoren@verizonmedia.com

Abstract—Real-world content recommendation marketplaces
exhibit certain behaviors and are imposed by constraints that
are not always apparent in common static offline data sets. One
example that is common in ad marketplaces is swift ad turnover.
New ads are introduced and old ads disappear at high rates
every day. Another example is ad discontinuity, where existing
ads may appear and disappear from the market for non negligible
amounts of time due to a variety of reasons (e.g., depletion of
budget, pausing by the advertiser, flagging by the system, and
more). These behaviors sometimes cause the model’s loss surface
to change dramatically over short periods of time. To address
these behaviors, fresh models are highly important, and to achieve
this (and for several other reasons) incremental training on small
chunks of past events is often employed. These behaviors and
algorithmic optimizations occasionally cause model parameters
to grow uncontrollably large, or diverge. In this work present a
systematic method to prevent model parameters from diverging
by imposing a carefully chosen set of constraints on the model’s
latent vectors. We then devise a method inspired by primal-dual
optimization algorithms to fulfill these constraints in a manner
which both aligns well with incremental model training, and does
not require any major modifications to the underlying model
training algorithm.

We analyze, demonstrate, and motivate our method on OFF-
SET, a collaborative filtering algorithm which drives Verizon
Media (VZM) native advertising, which is one of VZM’s largest
and faster growing businesses, reaching a run-rate of many
hundreds of millions USD per year. Finally, we conduct an online
experiment which shows a substantial reduction in the number of
diverging instances, and a significant improvement to both user
experience and revenue.

I. INTRODUCTION

The Verizon Media (VZM) native ad marketplace1 (pre-
viously known as Yahoo Gemini native) serves users with
native ads that are rendered to resemble the surrounding
native content (see Figure 1). In contrast to the search-ads
marketplace, users’ intent during page (or site) visits are
generally unknown.

Launched seven years ago and operating with a yearly run-
rate of several hundreds of millions of USD, VZM native is
one of VZM’s most prominent and fastest growing businesses.
With billions of ad views (impressions) daily, and an inventory
of hundreds of thousands of active ads, this system performs
real-time auctions that take into account user preferences, ad
targeting, and budget considerations.

1See https://gemini.yahoo.com/advertiser/home

In order to rank the native ads for the incoming users and
their specific context according to the cost per click (CPC)
price type, the expected revenue of each ad is computed
as a product of the advertiser’s bid and the predicted click
probability (pCTR). The pCTR is calculated using models
that are continually updated by OFFSET - a feature enhanced
collaborative-filtering (CF) based event prediction latent factor
model [2].

In content marketplaces (e.g., articles, videos, ads, etc.),
the set of users and content items may change abruptly and
dramatically over time. Ad marketplaces are particularly sus-
ceptible since both the number of ads and their turnover in the
marketplace at any given time is significant. Ad marketplaces
may easily contain hundreds of thousands and sometimes
millions of ads. New ads constantly flow in and old ads
similarly flow out. Moreover, existing ads may be turned on
or off in a heartbeat (e.g., due to budget being depleted or
renewed). This discontinuous behavior is also propagated to
the user side since some of the most prominent user features
are the users’ historical interactions with the various ads.
To address these issues, models must swiftly adapt to the
changing trends in the marketplace, and online incremental
training is a natural choice. Moreover, space and regulation
considerations often require deleting old data. If this old data
is valuable for capturing long term user preference patterns,
incremental training becomes a requirement. As an example,
GDPR regulation requires deleting certain types of data that
is older than 30 days whereas we’ve observed that our models
require two to three months of training data in order to perform
optimally.

To address these issues, we employ OFFSET in cycles, where
in each cycle the algorithm trains on a chunk of training
samples using multiple instances running in parallel, where
each instance is configured with a different setting of hyper-
parameters, e.g., step size. In particular, we train OFFSET using
a variant of the Adagrad [15] algorithm. At the end of each
cycle, the best performing model is selected and saved for ad
ranking. This best model is also used as an initial point for
the next training cycle. The chunk training is performed in
near real time fashion where the difference between the time
of an event and its usage within a production model used to
rank ads may be as low as several minutes. The mechanism
is described in detail in [3].

Consequently, we achieve two objectives: we adapt the

Fig. 1. Verizon Media native ads on Yahoo! homepage.

model and its hyper-parameters to the changing trends, and
more importantly, we adapt the ad ranking system to the
changing trends by frequently feeding it with a fresh model.
Indeed, it is our experience, as well as the experience of others
(see [22], [26], [29]), that model freshness is of paramount
importance to the performance of content recommendation
systems deployed in a changing environment. Moreover, it is
our experience that the parameters of the models as well as
their optimal hyper-parameters change over time, sometimes
significantly over short periods. In such settings it is sub
optimal to deploy a model trained on older data or with a-
priori chosen hyper-parameter settings.

The optimization algorithms which are often employed
when training models are not guaranteed to converge, or even
stay in a bounded region, for all hyper-parameter settings.
Indeed, we observed that for some hyper-parameter settings,
the latent factors of our model grow uncontrollably large,
causing the corresponding training instance to fail to produce
a meaningful model and subsequently be discarded by our
hyper-parameter tuning algorithm. When a large enough per-
centage of the instances are discarded, the pool of models
to choose the best model from is substantially reduced, and
consequently the performance of the chosen best model for ad
ranking is impaired.

Thus, in this work we aim to improve the robustness of
the training algorithm to the choice of hyper-parameters.
We show, by empirically analyzing the latent factors of the
model, that only a few latent factor models are affected by
bad hyper-parameter choice, and that it is indeed possible
to prevent most instances from diverging without impairing
the model’s performance. We then show how to achieve the
goal by imposing a carefully chosen bound on the model’s
latent vector norms using a mechanism that aligns well with
incremental model training. We employ the duality theory
in optimization to decouple model training from the bound
constraint enforcement, and devise a method based on the
well-known idea of primal-dual optimization algorithms such
that the only change to the underlying model training algo-
rithm is a different regularizer. We specialize the discussion to
OFFSET, but the ideas we present here will likely be useful for
any factorization based model. To the best of our knowledge,

the study of divergent behavior when training collaborative
filtering models is new, and our primal-dual approach for
divergence mitigation is novel.

The rest of the paper is organized as follows. After review-
ing related work in Section II, in Section III we describe details
about the OFFSET model, its training algorithm, and how
divergence is defined, detected and handled during training.
Then, we take a deeper look into the behavior of a diverging
model in Section IV from both theoretical and empirical
perspectives, and draw conclusions that lead to our method,
described in Section V. Finally, we demonstrate our method’s
improved performance in Section VI.

II. RELATED WORK

The divergent behavior we study in this work boils down to
failure to keep the iterates of the optimization algorithm that
trains the model in a bounded region of space. To the best
of our knowledge, studying and mitigating divergent behavior
has received little attention in the literature, and thus the body
of research devoted the subject is quite modest.

It is well known (e.g. Example 1 in [8]), that when the
trained loss functions grow faster than a quadratic polynomial,
divergent behavior under certain hyper-parameter choices is
inevitable, even for convex functions. Several works, such as
[7], [14], [25], propose algorithms to mitigate the issue for
the stochastic optimization setting. When certain assumptions
are met, the proposed algorithms ensure that the parameters
of the model indeed stay in a bounded region for any step-
size choice. These algorithms are mainly useful when little
resources for fine hyper-parameter tuning are available, how-
ever, their usefulness is limited in a scenario where significant
model optimization is required. Indeed, the numerical experi-
ments in [8] show that models trained with classical algorithms
using tuned hyper-parameters often perform better. Moreover,
our scenario of interest does not fit into the stochastic setting
where the training data is sampled from a stationary distribu-
tion. The contrary is true - we operate in a non continuous,
constantly changing environment, and thus we train our mod-
els in an online fashion. Our proposed primal-dual approach
aligns well with online training, without introducing significant
changes the underlying training algorithm. The above is an

important property when using an algorithm which has passed
the test of time, and proved to be very reliable for the task at
hand.

A different but related line of work is the convexification of
latent factor models, such as [11], [21], [28]. In these bodies
of work, the decision variables of the resulting optimization
problem are inherently bounded by construction, since the
convexification procedure itself directly represents a matrix
of inner products of the latent factors, instead of the factors
themselves, and maintains a low rank of this matrix by
imposing a threshold on its nuclear norm2. These methods,
despite promising to achieve a globally optimal solution in
terms of the training loss, are computationally expensive and
do not fit the low latency scenario, where the amount of data
is vast, and speed is of the essence, due to the importance of
the freshness of the deployed model.

III. BACKGROUND

A. Verizon Media Native

The VZM native ads platform serves billions of ad impres-
sions to several hundreds of millions of users world wide,
using a native ad inventory of hundreds of thousands of active
ads. Native ads resemble the surrounding page items, are
considered less intrusive to users, and provide a better user
experience in general (see Figure 1). The online serving system
is comprised of a massive Vespa deployment [1], VZM’s
open source elastic search solution, augmented by ads, budget
and model training pipelines. The Vespa index is updated
continually with ad and budget changes, and periodically (e.g.,
every 15 minutes) with model updates resulting from each
training cycle. The VZM native marketplace serves several ad
price-types including CPC (cost-per-click), oCPC (optimizing
for conversions), CPM (cost-per-thousand impressions), CPV
(cost-per-video-view), and also includes RTB (real-time bid-
ing) in its auctions.

B. The OFFSET Click-Prediction Algorithm

The algorithm driving Verizon media native models is
OFFSET (One-pass Factorization of Feature Sets): a feature
enhanced collaborative-filtering (CF)-based ad click-prediction
algorithm [2], which resembles a factorization machine [24].
The predicted click-through-rate (pCTR) of a given user u and
an ad a according to OFFSET is given by

pCTR(u, a) = σ(logit(u, a)) ∈ [0, 1] , (1)

where σ(x) = (1 + e−x)
−1 is the Sigmoid function, and

logit(u, a) = b+ νTu νa , (2)

where νu, νa ∈ IRN denote the user and ad latent factor
vectors respectively, and b ∈ IR denotes the model bias. The
product νTu νa reflects the affinity score of user u towards ad a,
where a higher score translates into a higher pCTR. Both ad
and user vectors are constructed using their features’ vectors,
which enable dealing with data sparsity and cold start issues

2For a matrix A, its nuclear norm ∥A∥∗ is the sum of its singular values.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

D

o

0

i
u
v

1

i
u
v

2

i
u
v

0~
i
u
v

1~
i
u
v

2~
i
u
v

s

i
u
v

Fig. 2. Example of a user latent factor vector construction for o = 4, s = 2
and K = 3 features (i.e., age, gender, and geo). Assume user ui is a 30 year
old female from NY city (i.e., ν0ui

blue - age 30 , ν1ui
red - female, and ν2ui

green - NY city). After filling the empty entries with 1s, the three vectors
(i.e., ν̃0ui

, ν̃1ui
, ν̃2ui

) are multiplied entry wise to get the final user ui vector
νui (in brown).

(ad CTR is quite low in general). For ads, we use a simple
summation between the vectors of their features (e.g., unique
creative id, campaign id, advertiser id, ad categories, etc.),
all in dimension N . The combination between the different
user feature vectors is more complex in order to allow non-
linear dependencies between feature pairs. The user vectors
are composed of their K-feature latent vectors vk ∈ IRn (e.g.,
age, gender, geo, etc.). In particular, o entries are allocated
to each pair of user feature types, and s entries are allocated
to each feature type vector alone. The dimension of a single
feature value vector is therefore d = (K−1)·o+s, whereas the
dimension of the combined user vector is N =

(
K
2

)
·o+K ·s.

An illustration of this construction is given in Figure 2. The
model’s parameters are the individual vectors associated with
each feature value, and the model’s bias b.

As with factorization machines, the advantage over the
standard CF approach is that the model includes only O(K)
feature latent vectors (one for each feature value, e.g., 3 for
gender - male, female and unknown) instead of hundreds of
millions of unique user latent vectors.

To learn the model parameters θ, OFFSET minimizes the
binary cross-entropy loss (or log-loss) of the training data set
T (i.e., past impressions and clicks) using one-pass variant of
Adagrad [15]. The loss function is as follows:

argmin
θ

∑
(u,a,y)∈T

L(u, a, y) ,

where

L(u, a, y) = −(1− y) log (1− pCTR(u, a))

− y log pCTR(u, a) +
λ

2
∥θu,a∥22, (3)

y ∈ {0, 1} is the click indicator (or binary label) for the
event involving user u and ad a, θu,a are the latent vectors

corresponding to the feature values of user u and ad a, and
λ is a global ℓ2 regularization parameter. For each training
event (u, a, y), OFFSET updates its relevant model parameters
by the gradient-based step

θ ← θ − η ⊙∇θL(u, a, y) ,

where ∇θL(u, a, y) is the gradient of the loss function w.r.t
θ, and ⊙ is a component-wise product between two vectors.
The parameter dependent step size is given by

η =
η0

α+
(∑

(u,a,y)∈S |∇θL(u, a, y)|
)β

,

where η0 is the initial step-size, α, β ∈ IR+ are the parameters
of our variant of the adaptive gradient (AdaGrad) algorithm
[15], and S is the set of training samples observed so far.
The OFFSET algorithm uses an online approach where it
continually updates its model parameters with each chunk
of new training events (e.g., every 15 minutes for the click
model).

The OFFSET algorithm includes an adaptive online hyper-
parameter tuning mechanism [3]. This mechanism takes ad-
vantage of our parallel hardware architecture to run many
instances of OFFSET in parallel in each training cycle, each
instance with its own set of hyper-parameters, and strives to
tune OFFSET hyper-parameters, such as η0, α, and β above,
to match the varying marketplace conditions. An instance
is defined to be diverging, and consequently is aborted and
discarded from consideration by our hyper-parameter tuning
algorithm, if for some latent vector v we have

∥v∥∞ ≥ τ,

where τ is some predefined threshold set based on previous
experience, and ∥v∥∞ is the maximum absolute value of any
component of v. In our system we use τ = 15, since form
our experience, in that case the instance will almost certainly
continue grownig uncontrollably large and fail to produce a
meaningful model.

Finally, we point out that the set of latent vectors in the
model changes over time as well, since new feature values
appear in the stream of training events, while old feature
values disappear from the stream. For example, when a new
ad appears which has not been previously encountered, a
corresponding latent vector is created and initialized with
normally-distributed elements with a zero mean and a small
standard deviation. When an ad is no longer encountered by
our training algorithm for a predefined period of time, its
latent vector is removed from the model. Thus, the dimension
of the model parameters vector θ, which can be seen as a
concatenation of all of the latent vectors of the model, changes
over time as well. As mentioned in a previous section, these
changes can be significant in quantity, abrupt, and induce a
non continuous dynamic to the model.

Other components of OFFSET, such as its weighted multi-
value feature [5], and similarity weights used for applying

“soft” recency and frequency rules3 [4], are not presented here
for the sake of brevity.

IV. ANALYTICAL AND EMPIRICAL STUDY

An integral part of solving the divergence issue is gaining a
deeper insight from both empirical and analytical perspectives.
We first take the analytical perspective by qualitatively inspect-
ing the updates of any training algorithm based on gradient
updates with coordinate-wise step sizes, such as AdaGrad [15].
Denoting the composition of the Sigmoid function with the
binary cross-entropy loss corresponding for the label y by Φy ,
the loss in (3) can be equivalently written as

Φy(logit(u, a)) +
λ

2
∥θu,a∥22, (4)

Consider a training sample (u, a, y) and look at the gradient
of the loss (4) with respect to some vector z corresponding to
a feature of the ad a:

∇zΦy(logit(u, a)) = Φ′
y(logit(u, a)) · νu.

When training the model, the algorithm will update z accord-
ing to the rule:

znext = zcurr − η ⊙ Φ′
y(logit(u, a)) · νu,

where η is some vector of coordinate-wise step sizes which
depends on the training algorithm of choice. From the above
we conclude that if some component of νu is large enough and
has the appropriate sign, the gradient update will substantially
increase the magnitude of the corresponding component of
z. Symmetrically, considering a vector w corresponding to
some feature of the user u produces a similar argument -
if some component of the ad vector νa or an overlapping
user feature vector turns out to be large enough and of the
appropriate sign, the corresponding component of wnext will
substantially increase in magnitude. Consequently, divergence
is contagious: it’s enough for a few vector components to start
growing beyond control to ’contaminate’ the entire model.

To study the phenomenon empirically, we located diverging
instances and plotted ∥ν∥∞ for all the latent vectors ν versus
the number of training samples which caused that vector to
be updated, just before the training in that cycle was aborted.
A typical plot can be seen in Figure 3, where each point is
a vector whose x coordinate is its infinity norm, while its y
coordinate is the number of training samples which caused that
vector to be updated. Its apparent that new vectors which were
not updated by many training samples, or were not updated
frequently, have small norms. That’s not a surprise - newly
added vectors are initialized to have small random elements.
Among the more mature vectors, we see only a few vectors
with exceptionally large norms, but still most vectors retain a
small norm.

From these two observations we draw a simple conclusion:
(a) since norm growth is contagious, it’s essential to maintain
vector norms below a certain threshold to mitigate divergence.

3How frequently and how recently a user was presented with a certain ad.

Fig. 3. Vector infinity norms of latent vectors before training abort. Each
vector is plotted as a point whose x coordinate is its infinity norm, while its
y coordinate is the number of training samples which caused that vector to
be updated.

(b) Imposing such a threshold without hurting the model’s
performance seems to be possible, since only a small fraction
of the model’s vectors will be affected.

V. MITIGATION THROUGH A CONSTRAINED OPTIMIZATION
APPROACH

To make sure our vectors have small elements, we impose
a constraint on their Euclidean norms, or equivalently, their
mean-squared element:

msqr(x) =
1

d
∥x∥22, where x ∈ Rd.

Thus, instead of training by minimizing (4), we train by
striving to solve the optimization problem

min
θ

∑
(u,a,y)∈S

Φy(logit(u, a)),

subject to msqr(θv) ≤ ρ, ∀v ∈ Vu,a
(5)

where θv is the latent vector corresponding to the feature value
v, and Vu,a is the set of latent vectors corresponding to the
features of user u and ad a.

Recall that divergence is detected and analyzed empirically
in terms of L∞ norms of the latent vectors, while our
constraints impose a limit on their squared L2 norm. There
are two primary reasons. First, from a practical perspective,
it’s easier to work with the squared Euclidean norm due to
its differentiability. Second, norms in a finite dimensional real
space are equivalent up to a constant, and in particular we
have

1√
d
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2, where x ∈ Rd.

Therefore, making the L2 norm smaller potentially also in-
duces a smaller L∞ norm, and our numerical experiments
in Section VI show that it is indeed the case. And finally,
we formulate using the mean squared element instead of
equivalently using the squared Euclidean norm, since there
is a good heuristic for discovering the upper bound ρ for that
case, which appears later in this section.

Observe also that the regularization term has been removed
from the loss, since imposing constraints is, in itself, a
form of regularization. As a by-product, we also make the
hyper-parameter tuning mechanism more efficient, since we
eliminate the global regularization coefficient λ in (4) from
the set of hyper-parameters to be tuned.

In theory, solving (5) can be performed by replacing any
optimization algorithm with its projected variant, e.g. gradient
projection [18]: after each gradient step, vectors whose mean
squared element is above the threshold are divided by a
constant to normalize their mean squared element. However,
projected algorithms are prohibitive in an incremental training
setting where models are not trained from scratch, but instead
continuously initialized from an existing model and trained
over a new chunk of data. The projection operator will
substantially modify the latent vectors having large norms, and
it from our experience it takes a prohibitively long time for a
new model to converge when initialized from a previous model
which does not impose constraints. Consequently, we impose
constraints using a considerably less aggressive mechanism,
inspired by primal-dual optimization algorithms. The remain-
der of this section is devoted to describing the algorithm in
detail, and to a heuristic for discovering a good upper bound
ρ for the formulation (5).

A. A naı̈ve approach

Before diving deeper, we first introduce a simple approach
that demonstrates the idea, although we found it to be non-
effective. It’s described for two reasons. First, from a peda-
gogical perspective, it allows readers unfamiliar with duality
to grasp the intuition behind our algorithm. Second, it demon-
strates that a more systematic approach may be required, and
provides some intuition about where improvements may be
made.

We attempt to solve (5) by replacing the the global regular-
ization coefficient in the loss (4) with a separate regularization
coefficient for each latent vector. Formally, upon receiving the
training sample (u, a, y) we perform the following steps:
Train Perform a training step using the loss

Φy(logit(u, a)) +
∑
v

µv msqr(θv)

Control If msqr(θv) > ρ, update µv by multiplying it with
some constant β > 1. Otherwise, divide µv by β.

If the parameter β, which controls the aggressiveness of the
control mechanism, is small enough, the control mechanism
will gradually increase the regularization coefficients of the
vectors having a mean squared element above the threshold,
thus causing the following training steps to reduce their norms.

Alternatively, vectors whose mean squared element is below
the threshold will have their regularization coefficient driven
towards zero.

Unfortunately, this simple control mechanism did not work
in practice. We were not able to find β which dramatically
reduces the number of retained instances, without worsening
the resulting model’s performance. Our conjecture was that the
increase or decrease of the coefficients µv should be somehow
related to the severity of the constraint violation, i.e. a larger
msqr(θv)− ρ should result in a more aggressive update, and
duality provides a systematic way of deriving such update
formulas.

B. A short review of duality

Duality is a central component of modern optimization
theory and practice, and is described in most standard op-
timization textbooks, such as [9]. To make this paper self-
contained and accessible, we give a short review, and authors
who are familiar should skip to the following subsection
(Section V-C).

Suppose we are given an arbitrary constrained optimization
problem

min
x

f0(x),

subject to fj(x) ≤ 0 j = 1, . . . ,m.
(6)

We define the following unconstrained counterpart defined for
µ ∈ Rd with µj ≥ 0:

q(µ) = min
x

L(x, µ) ≡ f0(x) +

m∑
j=1

µjfj(x)

 .

Namely, we assign a ’price’ µj ≥ 0 paid for the violation of
the constraint fj(x) ≤ 0. For each vector of prices µ there is
an optimal value q(µ). The function L, which serves as the
minimization objective of the unconstrained problem is called
the Lagrangian associated with problem (6).

A well known result is that q(µ) provides a lower-bound
on the optimal value of the problem (6). The dual problem
associated with (6) is concerned with finding the ”best” lower
bound, namely:

max
µ

q(µ) subject to µ ≥ 0.

The original problem (6) is called the primal problem. A well
known result in convex analysis implies that under convexity
the optimal values of both problems coincide. Formally,

Theorem 1 (Strong duality). Suppose that the functions
f0, . . . , fm in (6) are convex, the optimal value of (6) is finite,
and there exists x̂ such that fj(x̂) < 0 for all j = 1, . . . ,m.
Then,

max
µ
{q(µ) : µ ≥ 0} = min

x
{f0(x) : fj(x) ≤ 0, j = 1, . . . ,m}

A proof, and extensive material on convex duality in par-
ticular and optimization theory in general can be found in, for
example, [9].

As a consequence of strong duality, the idea of maximizing
the dual and minimizing the primal gave rise to a vast variety
of algorithms for convex optimization, called primal-dual
methods, which eventually boil down to the idea of iteratively
performing a pair of steps:
Primal descent Update x by performing a descent step on a

variant of the Lagrangian L(x, µ), assuming µ is constant.
Dual ascent Update µ by performing an ascent step on a

variant of the Lagrangian L(x, µ), assuming x is constant.
Prominent examples include the classical dual ascent and
augmented Lagrangian methods [6], [16], [20], the primal-
dual methods by Nesterov [23] and by Zhu and Chan [30].
The latter was improved by Chambolle and Pock in [12], and
generalized in [13].

Our problem of interest (5) is non-convex, and even if it
were, we are not really minimizing the loss over a given train-
ing set, but rather training on an infinite stream of samples.
Thus, we cannot employ these algorithms as reliable building
blocks with proven convergence guarantees. However, they do
provide valuable insight into the design of powerful methods
which work well in practice.

C. A duality-based approach

Our method is a variant of the classical dual ascent method
[6]. The Lagrangian corresponding to our constrained formu-
lation (5) is

L(θ, µ) =
∑

(u,a,y)∈S

Φy(logit(u, a)) +
∑
v

µv (msqr(θv)− ρ) .

Recalling that msqr is the mean-squared element function. Our
heuristic performs a primal descent and a dual ascent step for
each training sample.

1) Primal descent: We employ our regular training algo-
rithm on the given training sample, where the Lagrangian is
the training loss. Since primal descent minimizes over θ and
treats µ as a constant, it is equivalent to training with the loss∑

(u,a,y)∈S

Φy(logit(u, a)) +
∑
v

µv msqr(θv)

=
∑

(u,a,y)∈S

Φy(logit(u, a)) +
∑
v

µv

dv
∥θv∥22,

where dv is the dimension of the latent vector θv . Con-
sequently, primal ascent boils down to training the model
using a modified regularization term, which assigns a different
coefficient to each latent vector.

2) Dual ascent: The partial derivatives of the Lagrangian
with respect to the components of µ are

∂L

∂µv
= msqr(θv)− ρ.

An intuitive understanding of how dual ascent works can be
obtained by analazying the simplest dual ascent algorithm -
projected gradient ascent:

µnext
v = max (0, µprev

v + β(msqr(θv)− ρ)) , (7)

where β > 0 is the step size for the ascent step. Here, we
perform a gradient ascent step, that is followed by a projection
onto the non-negative numbers. If msqr(θv) > ρ, namely,
we’re violating our upper bound constraint, then the above
update rule will increase µv , and thus the next primal descent
step will regularize it more aggressively. If msqr(θv) ≤ ρ, then
the above update rule will decrease µv towards zero, and thus
the next primal descent step will regularize it less aggressively.
Consequently, dual ascent is a kind of a control mechanism,
and its step-size β affects its aggressiveness.

A major advantage of framing the mechanism to control
latent vector norms as a dual optimization problem is the fact
that it opens up the entire arsenal of optimization algorithms.
Consequently, duality is a systematic framework for deriving
update rules for µ: every optimization algorithm implies a
different control mechanism.

3) Our ascent algorithm: A well known result, e.g. [10], is
that the projected gradient step (7) can be alternatively written
using the proximal formulation

µnext = argmin
µ

{
−β ⟨∇µL(x, µ

prev), µ− µprev⟩︸ ︷︷ ︸
Alignment term

+
1

2
∥µ− µprev∥22︸ ︷︷ ︸
Proximity term

: µ ≥ 0

}
,

meaning ”find µ ≥ 0 such that the update direction µ−µprev

aligns with the gradient, while µ stays in close proximity to
the previous iterate”. The step-size β balances between the
two opposing forces. To achieve better convergence properties
by adapting the algorithm to either the objective functions or
the constraints, a common practice in optimization, e.g. see
[10], [13], [17], is to use a more general measure of proximity
instead of the squared Euclidean distance, and update µ using:

µnext = argmin
µ

{
−β⟨∇µL(x, µ

prev), µ− µprev⟩

+D(µ, µprev) : µ ≥ 0

}
, (8)

where D is a distance-like function called the Bregman diver-
gence. Algorithms of this form are known as mirror ascent, as
in [10], or Bregman gradient method, as in [17]. A rigorous
presentation, including the definition of a Bregman divergence,
can be found in [10] and references therein, and an extension
to the stochastic optimization setting on unbounded domains
can be found in [19].

The squared Euclidean distance is one example of a Breg-
man divergence. In this work, our divergence of choice is

D(u, v) =

d∑
i=1

[
ui ln(

ui

vi
) + vi − ui

]
with the convention that 0 ln(0) ≡ 0, for which the generic
formula (8) reduces to the multiplicative update rule

µnext
v = µprev

v eβ(msqr(θv)−ρ). (9)

Note, that this kernel results in a very simple update rule
which does not involve any projection steps, and the resulting
update formula is known by many names, such as the entropic
gradient step [10]. As we shall see in the evaluation section,
this choice works well in practice.

Intuitively, when msqr(θv) > ρ, the algorithm makes
increases µv by multiplying it by a factor greater than one.
Conversely, when msqr(θv) < ρ, the algorithm decreases
µv towards zero by multiplying it by a factor smaller then
one. Surprisingly, this approach, which works well in practice,
bears similarity to the naı̈ve approach described in Section
V-A.

4) Summary: To summarize, we modified the training algo-
rithm such that for each training sample (u, a, y) it performs
the following steps:
Primal descent Update model parameters θ by train on the

sample (u, a, y) with the loss

Φy(logit(u, a)) +
∑
v

µv

dv
∥θv∥22.

Dual ascent Update the dual variables αv using the update
formula in (9).

We would like to stress, again, that the approach above is not
an algorithm with provable convergence guarantees, but rather
a method inspired by primal-dual algorithms that turned out to
be very effective in practice. Moreover, note that we did not
specify how the primal descent is employed - we can just keep
the same training algorithm whose performance and reliability
has been proved for our task at hand, e.g. OFFSET training
stays unmodified in our case. Consequently, the approach is
non-intrusive and generic enough for a variety of tasks which
are solved by factorization models with their corresponding
training algorithm.

D. A heuristic for deriving bound ρ

Our heuristic is based on an analysis of the sigmoid function
σ(t) = (1+exp(−t))−1, and making some assumptions about
the distribution of mass between the user and the ad side.
In practice, our heuristic turned out to produce satisfactory
results, and may serve as the basis for similar heuristics
adapted to other factorization machines. We present it here,
since a similar line of thought may be useful for deriving
similar upper bounds for other factorization-machine based
models.

The click probabilities are computed by composing the
sigmoid function σ(t) onto logit(u, a). Observe that if
t /∈ [−12, 12] then σ(t) /∈ [10−5, 1 − 10−5]. Therefore,
if logit(u, a) lies in the interval [−12, 12], we cover the
entire range of plausible click probabilities. Consequently, our
heuristic begins from requiring that

|⟨νu, νa⟩| ≤ 12. (10)

Using the Cauchy-Schwartz inequality, namely,

|⟨x, y⟩| ≤ ∥x∥2∥y∥2,

we conclude that inequality (10) is ensured when

∥νu∥22∥νa∥22 ≤ 122. (11)

Let t > 0 be some parameter describing the ”division of mass”
between the user and the ad side, and it will be determined
later. Using this parameter, inequality (11) is ensured if we
require that

∥νu∥2 ≤
12

1 + t
, ∥νa∥2 ≤

12t

1 + t
.

The above can be equivalently written as

∥νu∥22 ≤
(

12

1 + t

)2

, ∥νa∥22 ≤
(

12t

1 + t

)2

, (12)

Denoting the length of the user and ad vectors by N , equation
(12) can be written as:

msqr(νu) ≤
1

N

(
12

1 + t

)2

, msqr(νa) ≤
1

N

(
12t

1 + t

)2

(13)
Since νu is constructed from products of user feature vectors
in the overlapping part, we make a rough approximation
by discarding the independent part of the user vectors and
assuming that the components of the overlapping vectors each
contribute roughly a square root of their product, and thus
require that for each user feature vector z we have

msqr(z) ≤

√
1

N

(
12

1 + t

)2

=
1√
N

12

1 + t
. (14)

To summarize, equation (13) provides a bound on the
mean squared element of an ad vector, whereas equation (14)
provides a similar bound for user feature vectors. We would
like both bounds to be to the same value ρ, and therefore we
solve the equation

1√
N

12

1 + t
=

1

N

(
12t

1 + t

)2

,

which is equivalent to a quadratic equation. Having computed
t, we substitute it into for example, its left hand side, and
obtain the heuristic mean-squared element bound ρ0:

ρ0 =
288

24
√
N +N

3
4

√
48 +

√
N +N

Figure 4 shows a plot of ρ0 as a function of various model
vector length N .

Since the entire process above is a heuristic based on sim-
plifying assumptions and unidirectional implications, imposing
the bound ρ0 on the mean squared elements is too tight, and the
actual bound we use should be larger. Consequently, we used
ρ0 is used as a starting point for a simple exhaustive search:
we trained ten models with ρ ∈ {kρ0 : k = 1, . . . , 10}, and
selected the smallest k for which models trained with a larger
k show no visible log-loss improvement.

Fig. 4. The value of the heuristic mean-squared element upper bound, as a
function of the model length.

VI. EVALUATION

Our aim was reducing the number of instances discarded
by the hyper-parameter tuning mechanism while improving
the model’s accuracy. We therefore evaluate the performance
of our method along these two criteria.

We measured, over the course of a week, the fraction,
between 0 and 1, of retained instances in each training cycle.
The results are plotted in Figure 5, where the orange line
depicts our improved algorithm, whereas the blue line depicts
the algorithm deployed in production at the time. It is apparent
that the production algorithm often discards over 20 percent of
its training instances, whereas our improved algorithm rarely
discards more than a few percent. We also measured the
capability of our algorithm to actually keep vector norms under
control. To that end, we plotted the maximum infinity norm
and mean squared element among the model’s latent vectors
after each training cycle for both the new and the production
model. The results are in Figure 6, where we see a vast
improvement over the production model. Moreover, we see
that indeed controlling the mean squared element also keeps
the infinity norm in check.

To back the claim that, except for reducing the number of
diverging instances, our method improves model accuracy, we
measured the LogLoss lift between a model training with our
algorithm and our production algorithm. In Figure 7 we can
see that except for a short ”acclimation” period during the
first day, the new algorithm consistently improves the LogLoss
metric.

We also conducted an online A/B test comparing our new
algorithm to the one deployed in production, in terms of
revenue impact measured by CPM (the cost of 1000 ad
views), and fitting to user preferences terms of CTR. The
results are summarized in Table I. The table shows the
relative daily lifts observed on each metric by the new model
relatively to the production model, e.g. CPM lift is defined as
100×

(
CPMnew

CPMbaseline
− 1

)
. We see an over-all 0.67% CPM lift

and 0.93% CTR lift, which are quite significant for an online
advertising product.

Fig. 5. The fraction of retained instances in each training cycle over the course of a week. The y axis is the fraction, between 0 and 1, of the instances that
were retained in each training cycle. The orange line is our improved algorithm, whereas the blue line is the existing production algorithm.

Fig. 6. The largest mean squared element and infinity norm of any vector encountered in the model, as a function of time, measured for both the production
and the new model. A substantial improvement is observed for both measures.

Fig. 7. LogLoss lift between our algorithm and the production algorithm over
the course of two weeks. The model our algorithm trained was initialized from
the production model. We can see that except for a short ”acclimation” period
during the first day, the new algorithm consistently improves the LogLoss
metric.

We measure the reliability of the overall lifts using a
Bayesian A/B testing methodology similar to [27], since it
allows to model the revenue generation process. For each
experiment, costs per click are modeled using an exponential
distribution with parameter λ, while CTR is modeled using a
Bernoulli distribution with parameter p. Consequently, CPM
is modeled by CPM = 1000 × p

λ . The lift comparing CTR
and CPM of both experiments are defined accordingly. By
constructing a posterior distribution of p and λ for both
experiments, we use Monte-Carlo simulation to compute two
the 95% credible interval [l, u], such that l, u corresponds the
2.5% and 97.5% percentiles, respectively. Looking at Figure
8 and the corresponding credible intervals, it is apparent that
the overall lifts are strictly positive.

Finally, we show that the multiplicative updates in equation
(9) are indeed better than the naive projected gradient ascent

Day CPM Lift (%) CTR Lift (%)
1 0.94 0.64
2 0.13 -0.2
3 0.56 0.14
4 1.35 0.91
5 0.24 0.86
6 -0.67 0.58
7 1.54 2.09
8 -0.27 1.68
9 2.16 1.6

TABLE I
AN ONLINE COMPARISON BETWEEN OUR IMPROVED ALGORITHM AND ITS

BASELINE, THE PRODUCTION ALGORITHM.

Fig. 8. Monte-Carlo simulation of CPM and CTR lifts, generated by sampling
the Bayesian posteriors. 95% credible intervals are drawn on the x axis using
blue arrows. The CTR credible interval is [0.63, 1.02], whereas the CPM
credible interval is [0.26, 1.09].

algorithm, which stems from using a Euclidean distance mea-
sure in the proximal formulation. We plotted in Figure 9 the
results of comparing the entropic algorithm to the euclidean
algorithm with the best-performing step-size, in terms of
LogLoss, we could achieve. We can see that the entropic
algorithm is both better at controlling vector norms, and at
achieving a better LogLoss.

Fig. 9. Comparison of entropic ascent to naive Eucldean gradient ascent.
Top - LogLoss lift. Middle - largest infinity norm among the vectors in
the model. Bottom - average of 10 largest infinity norms of vectors in the
model. It is apparent that the first few training rounds are an ”acclimation”
period where the LogLoss difference stabilizes and the inifnity norms drop.
Afterwards, we see that the entropic algorithm consistently improves LogLoss
while maintaining lower vector infinity norms.

REFERENCES

[1] Vespa - the big data serving engine. https://vespa.ai/, Last
accessed on 2021-05-03.

[2] Michal Aharon, Natalie Aizenberg, Edward Bortnikov, Ronny Lempel,
Roi Adadi, Tomer Benyamini, Liron Levin, Ran Roth, and Ohad Serfaty.
Off-set: one-pass factorization of feature sets for online recommendation
in persistent cold start settings. In Proc. RecSys’2013, pages 375–378,
2013.

[3] Michal Aharon, Amit Kagian, and Oren Somekh. Adaptive online
hyper-parameters tuning for ad event-prediction models. In Proceedings
of the 26th International Conference on World Wide Web Companion,
pages 672–679. International World Wide Web Conferences Steering
Committee, 2017.

[4] Michal Aharon, Yohay Kaplan, Rina Levy, Oren Somekh, Ayelet Blanc,
Neetai Eshel, Avi Shahar, Assaf Singer, and Alex Zlotnik. Soft frequency
capping for improved ad click prediction in yahoo gemini native. In
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pages 2793–2801, 2019.

[5] Morelle Arian, Eliran Abutbul, Michal Aharon, Yair Koren, Oren
Somekh, and Rotem Stram. Feature enhancement via user similarities
networks for improved click prediction in yahoo gemini native. In
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (CIKM), pages 2557–2565, 2019.

[6] KJ Arrow and RM Solow. Gradient methods for constrained maxima,
with weakened assumptions. Studies in linear and nonlinear program-
ming, pages 166–176, 1958.

[7] Hilal Asi, Karan Chadha, Gary Cheng, and John C Duchi. Minibatch
stochastic approximate proximal point methods. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 21958–
21968. Curran Associates, Inc., 2020.

[8] Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point
methods: Convergence, optimality, and adaptivity. SIAM Journal on
Optimization, 29(3):2257–2290, 2019.

[9] Amir Beck. Introduction to Nonlinear Optimization. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2014.

[10] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected
subgradient methods for convex optimization. Operations Research
Letters, 31(3):167–175, 2003.

[11] Mathieu Blondel, Akinori Fujino, and Naonori Ueda. Convex factor-
ization machines. In Annalisa Appice, Pedro Pereira Rodrigues, Vı́tor
Santos Costa, João Gama, Alı́pio Jorge, and Carlos Soares, editors,
Machine Learning and Knowledge Discovery in Databases, pages 19–
35, Cham, 2015. Springer International Publishing.

[12] Antonin Chambolle and Thomas Pock. A first-order primal-dual algo-
rithm for convex problems with applications to imaging. Journal of
mathematical imaging and vision, 40(1):120–145, 2011.

[13] Antonin Chambolle and Thomas Pock. On the ergodic convergence
rates of a first-order primal–dual algorithm. Mathematical Programming,
159(1):253–287, 2016.

[14] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based min-
imization of weakly convex functions. SIAM Journal on Optimization,
29(1):207–239, 2019.

[15] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. The Journal of
Machine Learning Research, pages 2121–2159, 2011.

[16] Roger Fletcher, editor. Optimization;: Symposium of the Institute of
Mathematics and Its Applications, chapter Powell, Michael J. D., A
method for nonlinear constraints in minimization problems, pages 283–
298. Academic Press Inc, University Of Keele, 1969.

[17] Masao Fukushima and Hisashi Mine. A generalized proximal point
algorithm for certain non-convex minimization problems. International
Journal of Systems Science, 12(8):989–1000, 1981.

[18] A. A. Goldstein. Convex programming in Hilbert space. Bulletin of the
American Mathematical Society, 70(5):709 – 710, 1964.

[19] Filip Hanzely and Peter Richtárik. Fastest rates for stochastic mirror
descent methods. arXiv preprint arXiv:1803.07374, 2018.

[20] Magnus R. Hestenes. Multiplier and gradient methods. Journal of
Optimization Theory and Applications, 4(5):303 – 320, 1969.

[21] Xiao Lin, Wenpeng Zhang, Min Zhang, Wenwu Zhu, Jian Pei, Peilin
Zhao, and Junzhou Huang. Online compact convexified factorization
machine. In Proceedings of the 2018 World Wide Web Conference,
WWW ’18, page 1633–1642, Republic and Canton of Geneva, CHE,
2018. International World Wide Web Conferences Steering Committee.

[22] Andreas Lommatzsch, Benjamin Kille, and Sahin Albayrak. Incorporat-
ing context and trends in news recommender systems. In Proceedings
of the international conference on web intelligence, pages 1062–1068,
2017.

[23] Yurii Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical programming, 120(1):221–259, 2009.

[24] Steffen Rendle. Factorization machines. In 2010 IEEE International
Conference on Data Mining, pages 995–1000, 2010.

[25] Ernest K Ryu and Stephen Boyd. Stochastic proximal iteration: a
non-asymptotic improvement upon stochastic gradient descent. Author
website, early draft, 2014.

[26] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. Hidden technical debt in machine
learning systems. Advances in neural information processing systems,
28:2503–2511, 2015.

[27] Chris Stucchio. Bayesian a/b testing at vwo. Whitepaper, Visual Website
Optimizer, 2015.

[28] Makoto Yamada, Wenzhao Lian, Amit Goyal, Jianhui Chen, Kishan
Wimalawarne, Suleiman A. Khan, Samuel Kaski, Hiroshi Mamitsuka,
and Yi Chang. Convex factorization machine for toxicogenomics
prediction. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’17, page
1215–1224, New York, NY, USA, 2017. Association for Computing
Machinery.

[29] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan
Li, and Yongdong Zhang. How to retrain recommender system? a se-
quential meta-learning method. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1479–1488, 2020.

[30] Mingqiang Zhu and Tony Chan. An efficient primal-dual hybrid gradient
algorithm for total variation image restoration. UCLA CAM Report,
34:8–34, 2008.

